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CONTROLLING DEPOSITION OF A SUBSTANCE ONTO THE INNER SURFACE 

OF A CYLINDRICAL CHANNEL 

V. V. Levdanskii UDC 536.422.4 

The problem of material deposition on the inner surface of a channel with free- 
molecular gas flow is considered. 

Deposition of material from the gaseous phase is one of the basic methods of producing 
thin layers of material [i]~ This method permits production of layers with thickness varying 
according to a specified rule. At sufficiently low pressures of the vapors of the material to 
be deposited, a free-molecular flow regime is created in the gas, and the thickness of the 
layer deposited is dependent only on system geometry~ the molecular flux incident on the sur- 
face, and the interaction conditions between gas molecules and solid surface. 

At the present time external problems have been studied thoroughly. In these cases, the 
deposition process can be controlled either by changing the position of the material source 
relative to the substrate or by changing the geometric parameters of the source itself. More 
complicated and less well studied are internal deposition problems. Thus, for example, in the 
case of deposition of a thin layer of material on the inner surface of a cylindrical channel, 
where the source of material to be deposited lies outside the channel, the deposition process 
can be controlled only by varying the gas pressure at the channel ends and the temperature 
distribution along the channel. 

In the present study we will examine questions of deposition of material layers on the 
inner surface of a cylindrical channel for a specified material deposition rule along the chan- 
nel at arbitrary values of the molecular condensation (adhesion) coefficient ~. 

Let it be required to deposit a thin layer of condensate along the inner surface of a 
cylindrical channel, with the layer thickness varying along the channel length by a specified 
rule. Naturally, the rule for change in layer thickness along the channel must determine the 
resulting molecular flux into the condensate. 

We will make some simplifying assumptions. We assume that at the start of the process the 
entire inner surface is coated by a layer of condensate (i.e., we will not consider the pro- 
cess of condensate formation on the bare substrate). The condensate formed is assumed solid. 
We will consider the problem in the quasistationary approximation. We assume that the growing 
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a2~ 

dx 2 

the solution of which has the general form 

condensate layer has no effect on the probability of molecular motion from one surface element 

to another, i.e,, the condensate layer thickness during the course of the entire process is 
assumed to be much less than the channel radius (in the conclusion we will consider a case 

where this assumption is not required). The rule for change in layer thickness with time has 
the form ndh/dt = J, where J is the resultant molecular flux into the condensate. Our problem 

consists of finding the conditions under which a specified value of J will be achieved. For 
a cylindrical channel the flux J can be written in the form 

! 

s :  P l (i + x'l)dx, + N0K (x) + NI (: - x)i - s ,  <1) 
0 

! 

f :  ( 1 - - ~ )  [ [ ( / + l ) K : ( I x - - x ' l ) d x ' ,  -7' NoK(x)+N:K(I--. '~)]] , (2) 
0 ' 

where x is a dimensionless coordinate (x = X/L); K:, K characterize the probability of molec- 
ular motion from one surface element to another [2]; No, N: are the flux densities of mole- 

cules entering the channels through its ends at x = 0, x = i; I is the flux density of re- 
flected molecules. The term in square brackets in Eqs. (i), (2) defines the flux of molecules 

incident on the portion of the capillary surface in the vicinity of the point x, which con- 
sists of molecules which have arrived from the remaining surface after evaporation, or after 
elastic (but diffuse) reflection, and also molecules which have arrived directly at the given 
point after entry into the channel from outside (with no beforehand collisions with the wall). 
The quantity j can be defined in the following manner [3, 4]: 

Q }. (3) ] = Aexp | - - k T  

The preexponential factor A depends on the model used in deriving Eq. (3). Thus, in the 
simplest case it is equal to n(kT/2~m) ~/2 [3]. Other (more accurate) expressions for the pre- 

exponential factor are presented in [4]. 

It should be noted that kinetic equation (3) does not contain the evaporation coefficient, 

which is introduced as a correction factor with use of Langmuir's formula [4] for the flux of 
evaporating molecules, The effect of impurity particles adsorbed on the phase front, which 
change the evaporation rate, should be considered in the kinetic relationships by means of a 

change in the heat of evaporation and the preexp0nential factor. When Langmuir's expression 
is used the effect of a different type of impurity is considered in the change in evaporation 

coefficient. 

Combining Eqs. (i), (2), we obtain 

I 

J @  .:i = [ FK: (Ix--  x ' l )dx '+  moK(X) + N!K(1 --  x), (4) 
'0 

where y = j + I, 

Approximating K:, K by exponential expressions [2], differentiating Eq. (4) twice, and 
combining the expression obtained with the original equation, we obtain the following dif- 

ferential equation for y: 

._ 12] d2J (5) 
d x  2 

The constants : and b are found by substitution of Eq. (6) in Eq. (4) and equating the coef- 
ficients of exp {--Ix}, exp {Ix}. 

Further, substituting the y value thus found in Eq. (i), we find the relationship between 
J and j, which permits finding the distribution T(x) required for the given function J(x). 

As examples we will consider cases where the condensate film thickness must vary with 
coordinates by exponential and linear laws or not vary at all (uniform deposition), i.e., 

J~ =Dexp {~x}, J2 = Bx + C, J3 = const = C. 
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The solution for y in these cases, according to Eq. (6), can be written in the form 

( v x = D , t  8 2 1 e x p { ~ x } + a l x + b l ,  

( ) g2 = lZ Bxa Cx2 a~_x + by 
6 + 2  

The e x p r e s s i o n  fo r  Y3 in  the  case  of  u n i f o r m  d e p o s i t i o n  f o l l o w s  from Eq. (8) a t  B = 0. 
The c o e f f i c i e n t s  a i ,  b i a r e  o b t a i n e d  by s u b s t i t u t i o n  of the  s o l u t i o n  f o r  y in  the  o r i g i n a l  
i n t e g r a l  e q u a t i o n :  

a~ - -  N ,  - -  No -/  D ( l  - -  [~) l l + 2 ~ [1 +exp  {[8}] , 

b , = N o  DI([--~)}z + ~ 1  { N I _ N o +  Dl(l--~)~z [ l + e x p { ~ } l } ,  

1 
a= = - -  [6t (N1 - -  N o ) -  3ClZ(l + 2 ) -  1 2 B -  B1 a - -  3Bt z - -  6Bl], 

6 (l +2)  

6I (Na -- No) -- 3C12(l + 2) -- 12B -- BP -- 3Bl 2 -- 6Bl 
6l (l + 2) 

JR 

l 

(7) 

(8) 

and a3, b3 are obtained from ai, b2 by setting B = 0. 

We note that in a similar manner we can obtain a solution for y for other forms of the 

function J(x), e.g., in the case where J(x) is a periodic function of the coordinate. 

Having obtained a solution for y, from Eq. (3) we obtain the temperature distribution 
which must be created for the given layer deposition rule: 

T = Ql(kln(A/])). 

We will consider in greater detail the case J = const (uniform deposition). 
for j we obtain from Eqs. (i), (2) 

] = ~ ( ~ + a a x + b a ) - - C ,  

which at ~ = 1 coincides with the result of 

(9) 

In this case, 

have 

creases. 

T~ 
kln { 

It is evident from Eq. (ll) 

Also following from Eq. 

(i0) 

[5]. From Eqs. (9), (i0) in the case No = NI we 

Q 
aC [Nolo - -  ll2 - -  l~/2 . x (1 --x)] -- C i -1 (11) 

A J 
that with decrease in the condensation coefficient T de- 

(ii) is a limitation on the maximum rate of material deposi- 
tion, which depends on the ratio of channel length to channel radius. The greater this value, 
the lower the deposition rate can be. 

We note that in the final case (uniform deposition) the assumption of smallness of the 

layer thickness in comparison to channel radius can be r omoved in principle, inasmuch as the 
channel geometry does not change, only the radius varying. 

The law for change in radius with time has the form 

r = ro -- h(t). (12) 

From Eqs. (ii), (12), it is evident that to realize a uniform deposition in the general 
case the temperature must vary in a specific manner with time. 

NO TAT IO N 

L, r, channel length and radius; ~ = L/r; t, time; n, molecular density in condensate; 
m, molecular mass; ~, condensation coefficient; Q, molecular evaporation energy; T, tempera- 
ture; k, Boltzmann constant; No, NI, molecular flux densities entering channel at each end. 
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SUPERSONIC RADIATION WAVES WITH MOTION OF PLASMA 

I~ V. Nemchinov, M. P. Popova, 
and L, P. Shubadeeva 

UDC 5 3 3 . 9 5  

A numerical solution is obtained to the two-dimensional radiation-gasdynamics 
problem of plasma formation under laser action. 

Laser radiation acting on a target produces absorption waves which travel in the opposite 
direction to the laser beam. The leading role in the wave propagation process can be played 
here by any of the various mechanisms, heat conduction (slow luminous combustion), hydrody- 
namics (luminous detonation), or spontaneous thermal radiation of plasma (subsonic and super- 
sonic radiation waves), depending on the density and the composition of the gaseous medium as 
well as on the flux density and the wavelength of laser radiation and on the duration of the 
laser pulse [i]. In supersonic radiation waves [1-3] the plasma, especially near their fronts, 
remains almost stationary and its density remains near its initial level. Such a pattern has 
been confirmed by one-dimensional calculations [2] as well as by experiments [3, 4]. This 
agreement between theory and experiment was subsequently utilized as the basis for calculating 
two-dimensional supersonic radiation waves [5]. Assuming a constant plasma density made it 
possible to treat the equations of radiation transfer simultaneously with only one energy 
equation, without the need to resort to the complete system of equations of gasdynamics. 

The role of gasdynamic processes is not always minor, however, even when the propagation 
of wave fronts is effected by the radiation mechanism. The plasma can move intensely far 
away from the fronts of radiation waves. Furthermore, as the radiation flux density gradually 
decreases and transition to luminous detonation occurs, the role of plasma motion becomes in- 
creasingly significant. Accordingly, the method of calculations in [5] was extended to the 
complete system of equations of radiation gasdynamics in the axisymmetric formulation 

O~U 
Ot 

Opw 
Ot 

- >  

Op + div (pv) = O, (1 )  
Ot 

_._>_ 

- -  + d i v ( p u v ) +  Op - - 0 ,  
Oz (2) 

. . +  

- -  + d i v  (pwv) + __OP = O, (3 )  
Or 

gpe + div (per+ p~q-~) = 0, 
Ot 

Ol, __>. 

as J 
4~0 

e = e ( T ,  p), p = p(T,  9). 

(4) 

(5) 

(6) 
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